Untukmenyelesaikan persamaan a cos x + b sin x = c, maka persamaan tersebut harus diubah ke bentuk : k cos (x - α) = c dengan k = √a² + b² . tan α = b/a → α = arc tan b/a . Contoh : Tentukan nilai x yang memenuhi persamaan cos x - sin x = 1 untuk 0 ≤ x ≤ 360° ! Penyelesaian : Diketahui cos x - sin x = 1.
Kelas 11 SMAPersamaan TrigonometriPersamaan TrigonometriHimpunan penyelesaian dari persamaan cos 2x + 3 sin x + 1 = 0 untuk 0
2 Persamaan trigonometri cos x = cos a° Himpunan penyelesaian untuk bentuk cos x = cos a° adalah Dalam satuan derajat: x = a° + k . 360° atau x = -a° + k . 360° Dalam satuan radian: x = a° + k . 2π atau x = -a° + k . 2π. 3. Persamaan trigonometri tan x = tan a° Himpunan penyelesaian untuk bentuk tan x = tan a° adalah Dalam satuan
BerandaHimpunan penyelesaian persamaan cos 2 x ∘ − sin x ...PertanyaanHimpunan penyelesaian persamaan cos 2 x ∘ − sin x ∘ − 1 = 0 untuk 0 < x < 360 adalah.....Himpunan penyelesaian persamaan untuk 0 < x < 360 adalah.....{180, 210, 330}{30, 150, 180}{150, 180, 330}{60, 120, 180}{120, 240, 300}AAA. AcfreelanceMaster TeacherPembahasan Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!836Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
Himpunanpenyelesaian dari persamaan cos 2x = 1/2 akar (3) Tanya. 11 SMA. Matematika. TRIGONOMETRI.
Kelas 11 SMAPersamaan TrigonometriPersamaan TrigonometriPersamaan TrigonometriPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0051Besar sudut 3/4 phi rad sama dengan....0531Himpunan penyelesaian dari persamaan sin 5x/a = sin 220...0104Bentuk sin^4x-cos^4x/tan^2x-1 ekuivalen dengan bent...0227Tentukan himpunan penyelesaian persamaan sin2x-15=sin2...Teks videojika menemukan soal seperti ini maka konsep yang harus diketahui adalah identitas trigonometri dan persamaan trigonometri tulis kembali Soalnya Cos 2 x + cos x = 0 lalu cos2x dapatkan konsep identitas trigonometri dimana cos 2x = 2 cos kuadrat x min 1lalu ditulis Kembali 2 cos kuadrat x min 1 + cos x = 0 kita rubah bentuknya 2 cos kuadrat x + cos x min 1 sama dengan nol maka langkah berikutnya kita faktorkan maka menjadi 2 cos x min 1 dan cos x + 1 = 0 dapatkan dua bentuk maka yang pertama 2 cos x min 1 sama dengan nol maka 2 cos x = 1 karena negatifkartu pada ruas kiri pindah ke ruas kanan menjadi positif 1 x cos x = 1 per 2 bentuk yang kedua cos x + 1 = 0, maka cos X = negatif 1 lalu kita gunakan konsep persamaan trigonometri dimana cos x = cos Alfa maka X = Alfa + K * 360 derajat = negatif Alfa + K dikali 360 derajat yang pertamasetengah maka cos x = cos 60 derajat x = 60 derajat dikali 360 derajat X = min 60 derajat + k * 360 derajat kita per misalkan k = 0 maka x = 60 derajat X = negatif 60 derajat ini tidak memenuhi karena syarat pada soal 0 derajat kurang dari sama dengan x kurang dari sama dengan 180 derajat untuk bentuk yang kedua cos X = negatif 1 maka cos x = coshajar lalu X = 180 derajat + k * 360 derajat bentuk yang kedua X = negatif 180 derajat + k * 300 derajat kita per misalkan k = 0 maka X = 180° dan X = negatif 180 derajat ini tidak memenuhi penyelesaiannya adalah 60 derajat dan 180 derajat jadi opsi yang tepat adalah yang sekian sampai jumpa pada soal berikut nyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
\n \n\n \n\n himpunan penyelesaian persamaan cos 2x
Jawabanpaling sesuai dengan pertanyaan Himpunan penyelesaian dari persamaan cos 4x+3sin 2x=-1 untuk 0^(@) adalah Kelas 11 SMAPersamaan TrigonometriPersamaan TrigonometriPersamaan TrigonometriPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0051Besar sudut 3/4 phi rad sama dengan....0531Himpunan penyelesaian dari persamaan sin 5x/a = sin 220...0104Bentuk sin^4x-cos^4x/tan^2x-1 ekuivalen dengan bent...0227Tentukan himpunan penyelesaian persamaan sin2x-15=sin2...Teks videoMisalkan kita mendapatkan soal seperti ini di soal kita diminta untuk menentukan himpunan penyelesaian dari persamaan ini yang di mana kita diberi batasan bahwa X ini lebih besar dari 0 dan lebih kecil atau sama dengan 360 derajat nanti sebelah kanan atas saya saya sudah simpan beberapa rumus atau rumus yang digunakan ketika kita menyelesaikan persamaan trigonometri Nah kita kembali ke soal-soal itu persamaannya dalam bentuk cos maka kita akan menggunakan rumus ini dan ini kita rumus ini ada dua yaitu rumus pertama ini dan ini adalah rumus kedua Nas Karang dari persamaan ini saya bisa bentuk menjadi disini cos 2x + 60 = cos. Berapa yang hasilnya adalah seperdua yaitu cos 120° dan cos 240 derajat kita ambil salah satunya saja kanan hasilnya hasilnya nanti akan tetap samapertama untuk ini kita bisa ubah bentuknya menjadi 2 x + 60 sesuai rumus Cos x = cos Alfa ini pada bagian pertama maka ini bisa menjadi 120 derajat + h x 360° atau ini menjadi 2x = 120 ini pindah ruas 60 pindah luar maka dikurang dengan 60 ini akan menjadi 60 derajat + k * 360 atau X semuanya kita bagi dua maka kita peroleh hasil yaitu 30 derajat ditambah k dikali 180 derajat sekarang kita itu Vika sudah rumus adalah bilangan bulat sembarang jadi kita subtitusikan nya jadi misalkan untuk KAA pertama yaitu sama dengan nol maka kita akan memperoleh x-nya hanya kitaini kita produksi dengan angka 0 maka x nya akan menjadi 30 derajat Kemudian untuk k = 1 sama kayak kita substitusi dengan angka 1 maka kita akan memperoleh X = 210 derajat sekarang untuk K = 2 dengan langkah yang sama kita peroleh X = 390 derajat ini sudah lebih besar dari 360 derajat karena di soal dikatakan bahwa X lebih kecil atau sama dengan 306 maka ini tidak memenuhi pertama kita tuliskan dulu himpunan penyelesaian sementara yang kita peroleh dengan menggunakan rumus pertama ini jadi himpunan penyelesaian ini HP = untuk sementara yaitu yang memenuhi 30 derajat dan 210 derajat sekarang kita masuk rumus keduanya dengan menggunakan rumusApakah ini bisa menjadi 2 x + 60 = rumus kedua tadi Min 120 derajat + 360 derajat atau ini 2 x = min 120 dikurang 60 ini pindah ruas sehingga jadi minus maka menjadi minus 180 derajat ditambah k dikali 360 derajat atau X = semuanya kita bagi dua maka ini akan menjadi minus 60 derajat + 2 dikali soalnya 360 derajat per 2 adalah 180 derajat ini indah ruas2 ini pindah ruas maka dia menjadi pembagi naskah itu sih dengan bilangan k bulat sembarang pertama untuk = 0 3 subtitusi kayaknya sama dengan nol maka kita peroleh X = min90° ini lebih kecil dari 0 derajat maka ini tidak memenuhi karena di soal dikatakan bahwa isinya harus lebih besar dari nol derajat dan yang kedua = 1 kita subtitusi X kita peroleh yaitu 90 derajat, maka selanjutnya untuk k = kita subtitusi dengan langkah yang sama hanya kita ganti dengan 2 maka X = 270 derajat sekarang untuk k = 3 dengan langkah yang sama kita peroleh X = 510 derajat ini sudah lebih besar dari 360 derajat maka ini tidak memenuhi jadi untuk pada bagian rumah kedua kita peroleh dua himpunan penyelesaian baru yaitu 90 derajat dan 270 derajat atau apabila kita susun dari dragke besar maka kita boleh himpunan penyelesaian nya yaitu 30 derajat 90 derajat 210 derajat dan 270 derajat kita cek di option di option ada Ce jadi jawaban untuk soal ini adalah C sampai jumpa di video berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

Himpunanpenyelesaian persamaan cos 2x=-cos x untuk 0

Bisakah kamu menyelesaikan himpunan penyelesaian persamaan trigonometri 2 Cos? Dalam soal matematika khususnya topik trigonometri terdapat banyak variasi soal yang menuntut jawaban dalam bentuk himpunan penyelesaian. Model pertanyaan seperti ini sering diberikan oleh guru kepada siswa di sekolah. Sebenarnya, sangat mudah kok menyelesaikan soal persamaan trigonometri jika kamu tahu langkah-langkahnya. Himpunan Penyelesaian Persamaan Trigonometri 2 Cos Nah, pada kesempatan ini kami akan tunjukkan beberapa variasi soal tentang 2 Cos yang bisa kamu pelajari dan pahami untuk agar bisa menyelesaikan juga saat kamu menemukan soal sepert ini. Baiklah, berikut ini soal dan cara menyelesaikannya Himpunan Penyelesaian Persamaan Trigonometri 2 Cos Soal Persamaan Trigonometri 1 Carilah himpunan penyelesaian persamaan trigonometri 2 Cos 2x - 60o = 1 untuk 0o x 180o Jawaban 2 Cos 2x - 60 = 1 Cos 2x - 60 = 1/2 = Cos 60 2x - 60 = 60 + atau 2x - 60 = - 60 + 2x = 120 + atau 2x = x = 60 + atau x = Jadi; Jika k = 0, maka x = 60,0 Jika k = 1, maka x = 240, 180 Jika k = 2, maka x = 420, 360 Jadi, himpunan penyelesaian persamaan trigonometri di atas untuk interval 0 ≤ x ≤ 180 adalah 0, 60, 180 Soal Persamaan Trigonometri 2 Carilah himpunan penyelesaian dari persamaan trigonometri 2 Cos x - √3 = 0 Jawaban 2 Cos x - √3 = 0 2 Cos x = √3 Cos x = 1/2 √3 = Cos 30 x = 30 + atau x = -30 + Jadi; Jika k = 0, maka x = 30, 0 Jika k = 1, maka x = 390, 330 Jika k = 2, maka x = 750, 690 Jadi, himpunan penyelesaian persamaan trigonometri di atas untuk interval 0 ≤ x ≤ 360 adalah 30, 330 Nah, jika ada soal tentang mencari penyelesaian persamaan trigonometri 2 Cos, kamu sudah paham kan cara menjawabnya? Ikuti saja langkah-langkah yang telah kami paparkan di atas. Sekian dulu materi kali ini, bagikan kepada temanmu yang membutuhkan. Terima kasih, semoga bermanfaat.
Bentuk pertanyaan himpunan penyelesaian dari persamaan : cos 2x + cos x = 0 untuk 0 ≥ x ≥ 360 adalah - Lihat pembahasan yang lebih lengkap di Brainlyhtt
Kelas 11 SMAPersamaan TrigonometriPersamaan TrigonometriPersamaan TrigonometriPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0051Besar sudut 3/4 phi rad sama dengan....0531Himpunan penyelesaian dari persamaan sin 5x/a = sin 220...0104Bentuk sin^4x-cos^4x/tan^2x-1 ekuivalen dengan bent...0227Tentukan himpunan penyelesaian persamaan sin2x-15=sin2...Teks videojika kita menemukan seperti ini pertama kita lihat persamaannya yang ini nah disini cos2x nya bisa kita ganti dengan menggunakan rumus sudut ganda jadi cos 2x = 2 cos kuadrat x min 1 sehingga jika disubstitusikan lagi ke persamaannya menjadi 2 cos kuadrat X dikurang 1 dikurang 2 cos X = min 1 jika min 1 nya pindah ruas akan habis Halo maka persamaannya menjadi 2 cos kuadrat x 2 cos X = 02 cos X bisa kita keluarin jadinya 2 cos X dikali cos x min 1 = 0 akar-akarnya ini jadi ada dua yang pertama adalah 2 cos x = 0 cos x nya = X berapa jika cos dengan sudut X Ini hasilnya adalah 0 itu ada 90 derajat dan ada juga 270 derajat 90 derajat ini kalau kita bentuk dalam phi = phi per 2 hal untuk yang 207 Jika kita ubah ke phi jadinya 3 phi per 2 alu yang kedua ada cos x min 1 = cos x = 1 maka kita cari sudut berapa yang cos sudut tersebut hasilnya adalah 1 ada 2 nih Yang pertama adalah yang kedua adalah 360 derajat. Jadi kalau 0 derajat ke dalam bentuk tetap 0 lalu ke 360° 2 phi interval x nya ada di 0 sampai 2 phi tapi 0 dan 2 phi nya tidak masuk karena bukan kurang dari sama dengan simbolnya sehingga himpunan penyelesaian nya ada phi per 2 dan 3 phi per 2 Yang ini Ini nggak masuk ya karena tidak kurang dari = sehingga jawaban di sini itu tidak ada karena semuanya masuk 0 seharusnya itu tidak masuk dalam interval x nya sehingga himpunan penyelesaian nya cukup ini saja sampai berjumpa di pertanyaan nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

Jawabanpaling sesuai dengan pertanyaan Himpunan penyelesaian dari persamaan cos 2x-3cos x+2=0 untuk 0 < x < 2pi adalah . Jawaban paling sesuai dengan pertanyaan Himpunan penyelesaian dari persamaan cos 2x-3cos x+2=0 untuk 0 < x < 2pi adalah . Belajar. Primagama. ZeniusLand. Profesional. Fitur. Paket Belajar. Promo. Testimonial.

Kelas 11 SMAPersamaan TrigonometriPersamaan TrigonometriPersamaan TrigonometriPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0051Besar sudut 3/4 phi rad sama dengan....0531Himpunan penyelesaian dari persamaan sin 5x/a = sin 220...0104Bentuk sin^4x-cos^4x/tan^2x-1 ekuivalen dengan bent...0227Tentukan himpunan penyelesaian persamaan sin2x-15=sin2...Teks videohalo friend pada soal ini kita akan menentukan himpunan penyelesaian dari persamaan trigonometri yang diberikan untuk X lebih dari sama dengan nol dan kurang dari 2 phi untuk menyelesaikan soal ini bisa kita gunakan rumus trigonometri kalau kita punya sin 2x maka ini sama saja dengan 2 Sin x cos X berarti pada sin 2x nya disini kita ganti dengan 2 Sin x cos X Karena pada yang di ruas kiri di setiap suku penjumlahannya sama-sama punya 2 cos X maka bisa kita keluarkan 2 cos x nya di luar kurung dan dalam kurung nya tinggal di sini Sin x ditambah 1 sama dengan nol yang artinya Kita akan punya 2 cos x nya yang sama dengan nol atau Sin x ditambah satunya yang sama dengan nol nggak kita akan memperoleh artinya untuk cos x nya disini yang sama dengan nol atau Sin x nya = min 1 cos x = 0 di sini kita gunakan persamaan trigonometri untuk kos kalau kita punya cos x = cos Alfa maka x nya = + minus Alfa dikali 2 phi untuk anggota bilangan bulat Jadi yang pertama di sini Kita akan punya cos x = cos 0 agar kita bisa gunakan yang Konsep ini makan maunya kita ubah ke dalam bentuk cos bisa kita manfaatkan salah satu sudut yang kalau kita tentukan nilai cos nya hasilnya adalah 0 yaitu Kita akan punya hiper 2 berarti di sini kita ganti alfanya masing-masing dengan phi per 2 yang mana kita akan punya dua bentuk dengan bentuk yang pertama di sini part 2-nya tandanya adalah positif karena hanya adalah anggota bilangan bulat dan kita ketahui bilangan bulat dimulai dari bilangan negatif kemudian 0 lalu positif kalau kita ambil kanan bilangan negatif tentunya x-nya akan bertanda negatif dan tidak termasuk ke dalam interval nilai x yang diberikan sehingga bisa kita mulai dari kakaknya sama dengan nol maka kita akan memperoleh x nya = phi per 2 lalu kalau tanya disini adalah 1 maka kita akan memperoleh nilai x nya akan melebihi 2 phi dan tentunya sudah tidak termasuk lagi ke dalam interval nilai x yang diberikan untuk yang semakin besar maka nilai x akan semakin besar yang mana untuk A = 1 saja nilai x sudah tidak memenuhi maka untuk saya yang lebih dari 1 tentunya nilai-nilai X yang sudah tidak memenuhi jadi untuk bentuk ini hanya ada satu nilai x yang memenuhi yaitu phi per 2 selanjutnya ketika di sini tandanya negatif Kita akan peroleh juga hanya ada satu nilai x yang memenuhi ketika kalinya sama dengan 1 yaitu x nya = 3 phi per 2 lalu karena kita punya Sin x = min 1 berarti kita akan mencari berdasarkan persamaan trigonometri untuk Sin kalau kita punya Sin X = Sin Alfa maka x yang memenuhi 2 bentuk ini untuk x = min 1 yang mana kita ambil salah satu sudut yang kalau kita tentukan nilai Sin a adalah min 1 yaitu Sin 3 phi per 2 untuk yang pertama yang memenuhi hanya ada satu nilai x yaitu 3 phi per 2 lalu untuk bentuk yang kedua kita juga akan memperoleh 1 nilai x yang memenuhi X = 3 phi per 23 untuk himpunan penyelesaiannya atau kita singkat dengan HP yang mana Ini adalah himpunan yang anggotanya adalah nilai nilai x yang memenuhi di sini walaupun 3 phi per 2 kita peroleh sebanyak 3 kali cukup kita. Tuliskan satu kali saja sehingga kita akan peroleh anggota-anggota dari hp-nya ada tipe 2 serta 3 phi per 2 seperti ini yang mana jawaban yang sesuai adalah yang pilihan D demikian untuk soal ini dan sampai jumpa di soal nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul cpevP.
  • d9g8m1b61p.pages.dev/76
  • d9g8m1b61p.pages.dev/154
  • d9g8m1b61p.pages.dev/183
  • d9g8m1b61p.pages.dev/217
  • d9g8m1b61p.pages.dev/39
  • d9g8m1b61p.pages.dev/4
  • d9g8m1b61p.pages.dev/204
  • d9g8m1b61p.pages.dev/177
  • d9g8m1b61p.pages.dev/90
  • himpunan penyelesaian persamaan cos 2x